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T 
I. INTRODUCTION 

HE RECOVERY or restoration of a signal that  has been 
distorted is one  of  the most  iinportant  problems  in 
signal processing. Some examples are the recovery of 

the  input to a linear  shift-invariant system from  its  output 
(deconvolution),  the  restoration of a  multidimensional signal 
from  its  projections, the recovery of the  input  to a nonlinear 
or shift-varying system from  its  output,  and  the  extrapolation 
of a signal from  a  finite segment of that signal. In all these 
cases an appropriate  mathematical  representation is 

y = D x  

where x is the  unknown  input signal, y is the  known  output 
signal, and D is a  known  distortion  operator  or  transforma- 
tion.  In ( l ) ,  x and y might represent  continuous signals  of one 
or  more dimensions, in  which case x and y would be functions 
of one  or  more  continuous variables, or  they might be discrete 
signals, in which  case x and y would be sequences or  arrays of 
numbers. D should be thought of as a general operator which 
will map either  functions  into  functions  or  sequences  into 
sequences. The  problem of signal restoration is simply that of 
recovering x given y and D.  From  this  point of  view, equation 
(1) is a  functional  equation  that  must be  solved for x .  

One  approach to solving for x is to find the inverse operator 
D-' such that 

x = D-' y .  (2) 

In many cases  of practical  interest, however, it may be diffi- 
cult,  or  indeed impossible, to  determine  and  implement  the 
inverse operator,  or we may have  available only an approxi- 
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mation to  the operator D. Implementation of the inverse 
operator based on  incomplete  knowledge of D may be quite 
unsatisfactory. Even if D-' can be approximated  and im- 
plemented,  the result of applying  it to the signal y may differ 
radically from the  true  solution if y is known imprecisely due 
to such uncertainties as additive noise. In addition, the dis- 
tortion  operator D may be such that many  inputs will produce 
the same output signal y in  which case the inverse operator 
does  not  exist. This situation  occurs if D is the  bandlimiting 
operator.  In such cases, limited  prior  knowledge of the  prop- 
erties of x may be useful in  removing the  ambiguity. By 
definition, however, D-' is determined solely by D ,  and  the 
properties of x are not  considered.  Thus  there  are  many dis- 
advantages in the direct  implementation of inverse operators 
for signal restoration. 

For  these reasons, alternative  approaches to signal restora- 
tion  are of interest.  One  approach that is particularly attrac- 
tive for  computer  implementations is the  method of successive 
approximations. This approach, which has a  long  mathemati- 
cal history, is typically based upon an iteration  equation of the 
form 

xk+l  =Fxk (3) 

where F is an operator which is obtained  from  (1).  It is not 
necessary, however, that F depend only upon D. As we shall 
see, it may also incorporate  constraints based upon  known 
properties of the desired solution. In general the iteration 
equation is not  unique;  many  different  iteration  equations can 
be derived for  a given distortion  operator  and  set of  signal 
constraints. 

Such iterations  are useful if it can be shown  that  the se- 
quence of approximations {xk}  converges to a unique solu- 
tion. Although convergence generally requires an  infinite 
number of iterations,  acceptable  approximations can usually 
be found  for  finite values of k. Practical interest  in  iterations 
such as these  stems  from  the great flexibility which is avail- 
able for mixing constraints  and  distortions.  Often the dis- 
advantage of slow convergence can be offset by the fact that 
it is not necessary to determine  the inverse of the distortion 
operator. This is particularly significant for  nonlinear  or  shift- 
varying  (e.g., time-varying) distortion  operators. 

These advantages have led  many researchers, including  our- 
selves, to investigate a variety of iterative  restoration proce- 
dures. One of the  purposes of this paper is to show that  these 
different schemes are all special cases of a general iteration 
equation  that  incorporates  constraints  on  the desired solution 
in a very straightforward  manner. 

The  paper begins with  the derivation of the general iteration 

0018-9219/81/04004432$00.75 O 1981 IEEE 



XHAFER er d.: ITERATIVE RESTORATION  ALGORITHMS 433 

formula  and  a discussion of its convergence properties. This 
theoretical  framework  is developed in  Section 11. In Section 
111, several iterative  procedures  are  shown to be special cases  of 
the general iteration  formula.  The  framework of Section I1 
can also be used as a basis for  generating new iterative pro- 
cedures  for  handling  other  combinations of distortions  and 
constraints.  Section IV  of the  paper examines a particular 
subclass of constrained  iterative  deconvolution  procedures. 
In particular it is shown  that for signals that are nonnegative 
or  that have finite support (e.g., are  time-limited  or space- 
limited), the  incorporation of appropriate  constraints leads to 
a sensible extrapolation of the  Fourier  transform so as to 
restore high frequency  information  lost  when  the  distortion 
is a bandlimiting  operator.  Examples of the  application of 
iterative  procedures to  both  synthetic signals and gamma-ray 
spectrum  data  illustrate  the convergence properties  and  the 
effects of additive noise. The  final  section of the  paper sum- 
marizes the  important results  and  offers suggestions of  new 
aDplications  of tho basic iterative  procedures. 

11. A BASIC ITERATION EQUATION 

A.  Derivation 
The  restoration of x from y by an iterative  procedure is 

facilitated by the use  of prior  knowledge of the  properties 
of the desired solution. For  example, we may know  that x 
is a  bandlimited signal, or  that  it is time-limited or space- 
limited, or we  may know  on physical grounds  that x can have 
only nonnegative values. A convenient way  of expressing such 
prior  knowledge is to define  a  constraint  operator C, such that 

x = c x  (4) 

if and only if x satisfies the constraint. For  example, if x is a 
discrete one-dimensional signal, known to be nonnegative, 
then C could be def ied by the positivity operator P ;  i.e., 

x(n) ,  if x(n)  2 0 

otherwise. 
~ [ x ( n ) l  G P [ x ( ~ ) I  = t 0, (5 ) 

Similarly, if x is an analog signal, known to be bandlimited to 
frequencies below R,, then  the  appropriate  constraint  opera- 
tor can be def ied  by 

In these cases,  signals with  the prescribed properties are not 
changed by the  constraint  operators, and signals not having the 
prescribed properties  are  converted  into signals  which do have 
those  properties. 

Using such a  representation  for a  priori signal constraints, 
equation  (1)  can be expressed as 

y = DCX (7) 

where the  operator DC is the  concatenation of C followed 
by D .  

One approach  toward  obtaining an iteration  equation fol- 
lows from  combining  (4)  and (7) to obtain  the  identity 

X = CX + A(y - DCX)  (8) 

where h is either a  constant  parameter,  a  function of the inde- 
pendent variables, or  a  function of x .  Equation (8) is clearly 

in the  form 

x = F x  (9) 

where the  operator F is defied by 

F x = X Y + C X -   A D C x = h y + G x  (10) 

with 

G = ( Z -  r n ) C  (1  1) 

where I is the  identity  operator.  The signal x that satisfies (9) 
is called a  fixed  point of the  transformation F [ 11-[3]. A 
standard  technique  for finding such solutions is the  method of 
successive approximations based upon  the  iteration  equation 

xk+ 1 = FXk = Xy + Gxk. (12) 

We shall later see that X can sometimes be  used to control  the 
rate of convergence of the iteration. In many cases it is con- 
venient, even advantageous, to choose  the  initial  approxima- 
tion as x .  = h y .  However, this is not necessary and x. can,  in 
general, be any signal in  the space of functions  containing  the 
desired solution x .  

The convergence properties  and  the  uniqueness of the final 
result of such  an  iterative  procedure  are, of course,  a major 
consideration  in  practical  applications. As we shall see, the 
theory of functional analysis provides powerful theorems  that 
can be directly applied to  the  solution of (9) using the  itera- 
tion of (1 2). 

B. Convergence 
We shall begin  by  assuming that  the signals x and  the  outputs 

of the iteration xk are  members of a  complete  normed  linear 
space with  norm 11 x 11 defined,  for  example, by 

112 

for  continuous  onedimensional signals, and by 

for  discrete one-dimensional signals. Suppose  that 

for xi and xi in  some  closed subspace of the space of signals. 
If 0 < r < 1,  the  operator F is said to be a contraction  map- 
ping (or simply a contraction) in that subspace [ 11 - [ 3 ] .  If 
r = 1  the  operator is  said to be nonexpansive, and if r = 1  and 
(1 5 )  holds  with  equality only if xi = xi ,  then  the  operator F is 
strictly  nonexpansive [ 31 . 

Since the  norm can be interpreted as the  distance  between 
two signals, we can  say that  contraction  operators  (systems) 
have the  property  that  the  distance  between  two signals tends 
to decrease as the signals are  transformed by the  operator.  For 
linear  systems,  this is roughly equivalent to saying that  the 
gain of a  contractive  operator is less than  unity. 

If the  operator F is a  contraction  in  some subspace, then  it 
has a  unique  fixed  point x in that subspace such that x ‘= Fx. 
Furthermore, every sequence of successive approximations 
defined by (1 2) converges to x for every choice of the starting 
signal x .  in  the  subspace; i.e., xk + x as k + 00. The above 
two  sentences  state  a  form of the well known contraction 
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mapping  theorem of functional analysis [ 21, [ 31. A further 
consequence of (1 5) is 

r k + i  

1 - r  
Ilx - X k l l <  - II x - x0 II (16) 

for any x0 in the subspace [21, [31. That is, every sequence of 
iterations converges geometrically to  the unique  fiied  point 
x in the sense that limb+- Ilx - xkll = 0. 

This is a very powerful  theorem which not  only  guarantees 
convergence of the  iteration in (1 2), but also guarantees  the 
existence and uniqueness of the solution. 

If the  operator is only nonexpansive, the  situation is not as 
nice. Nonexpansive  operators may have many fiied points, 
and  the  method of successive substitutions may not converge. 
If, however, the  operator is strictly nonexpansive, there may 
be a  unique f sed  point  and  iterations based upon  the  method 
of successive substitutions may converge [ 31. 

For  the iteration  scheme  in  question, F is defined  by  (10) 
and (1 1). Thus  the  iteration of (12) converges if F is a  con- 
traction.  From (10)  it follows that 

I IFx~ - Fxjl l  = 11 G x ~  - Gxjll. (17) 

Thus  the iteration converges  if G is a  contraction.  The opera- 
tor G ,  given by  (1 l) ,  is seen to involve both  the distortion 
operator D and  the  constraint  operator C as well as the  quan- 
tity X, which we are free to choose to guarantee  that G is a 
contraction.  It  may also be possible to choose X so that  the 
rate of convergence is optimized.  The  details of the  proof 
that G is a  contraction  depend  upon  the specific properties 
of D and C. Numerous examples are discussed in  Section 111. 

C. Noniterative  Solution 
When G is a linear  operator, it is possible to obtain  a closed- 

form expression of the  form xk = HkxO, which gives the result 
of k iterations of (12) directly in  a single operation. To see 
this, we substitute x0 = hy  into (1 2) to obtain 

xk+l = X 0  + GX&. (18) 

When G is a linear operator, it is easy to see that  repeated 
application of (18) leads to 

X & = X O  + G X O   + G 2 x o  + (19) 

where Gi  means that  the  operator G is applied i times. Since 
C is linear, we can express Xk as 

where H k  is the  operator 

and Go is understood to  be  the  identity  operator I .  If 11 C x  11 < 
rll x l f  where 0 < r < 1, which is true if C is a  contraction,  then 
it can be shown [21 that 

H k = ( I -  G ) - ' ( I -   C k + l ) .  (22) 

Equation  (22) gives an expression for the direct  transforma- 
tion from  the initial to  the &th approximation.  Furthermore, 
ifIIG~}~<rllxll,itiseasilyshownthatIIG~+~xll<r~+~llxll, 
so that if O < r <  1, then I I ~ k + 1 x l l + O  as k +Q). This sug- 
gests that  the  soIution x could be found  directly (x = Bxo) 

using the  operator 

H = (I - G)-1 (23) 

It is worth  pointing  out  that  (23) follows directly  from (18) 
by  substituting x = x&+ = xk and solvirig for x in  terms of x. . 
This can be done  without  the  assumption of linearity  required 
to obtain  (22). 

Obviously, the use of (22)  and  (23) can avoid a great deal of 
computation; however, the utility of these  equations  depends 
upon  the ease with which the  operator ( I -  G)- l  can be im- 
plemented.  It may be no easier to implement ( I -  G)- l  than 
to implement D-' directly. 

D. Error Analysis 

There  are  three basic sources of error  in using the  iteration 
of (12).  They  are: 1)  truncation of the sequence of iterations; 
2)  inaccuracies  in  measurements of y or  in the assumed distor- 
tion  and  constraint  operators;  and 3) imperfections  in  the 
implementation of the  iteration. We shall discuss 1) and 2) in 
this section  and 3) will  be  discussed in  Section IV. 

The  effect of truncation of the  sequence of iterations can 
be  assessed  by considering (16), which states that  the  norm 
of the error decreases at least  exponentially. In cases where 
r can be accurately  estimated,  equation  (16) could serve as a 
quantitative  bound on the error. However, equation  (16) may 
not be very useful since it may be difficult to estimate r,  or 
the  estimate may be signal dependent. Also, in some cases, 
convergence may  be  faster than implied by the  bound  in (16). 
Some  quantitative  results  for  a class of deconvolution algo- 
rithms  operating  on impulsive signals are given in  Section IV. 

Errors also result when the available output  does  not satisfy 
(7). Thus, if y r  is the observed output  due  to  an  input x ,  and 
y is the  output of the assumed model  due to  that same input, 
then using the  operator G = ( I -  AD) C with  these  outputs, 
the iterative  procedure will  converge respectively to x' and x 
satisfying the  equations 

x' = Xy' + Gx' (24) 

x = A y + G x .  (25) 

Taking the difference of these  two  equations, we see that 

I l x ' - x l l = I I h ( y ' - y ) + G ~ ' - G ~ l l .  (26) 

Using the triangle  inequality  for  the  norm  and  the  assumption 
that G is a  contraction  leads to  the inequality 

1Ix'-  XI1 < x IlY' - Y II 
1 - r  

where 11 Gx' - CxII  < rll x' - xll. This gives a  bound on the 
error  due to  an  inadequate  representation of the  output. 

A simple example occurs when 

y ' = y   + e  (28) 

Le., when  there is additive noise in  addition to  the distortion 
modeled by the  operator D.  If (28) is substituted  into (27), 
we obtain 
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which  gives a  bound on  the error of the  iteration  in  terms of 
the  norm of the noise. 

Another way in which errors  can  result is if the actual dis- 
tortion  operator  differs  from  the assumed distortion  operator; 
i.e., 

y’ = D’x (30) 

Substituting  (30)  into  (27) gives 

An interesting  and  useful  result can  be obtained  for  the case 
where D and D’ are  linear  shift  invariant  operators so that 
D X  = h * x where * denotes  convolution. Using Parsed’s 
theorem we note  for one-dimensional f i t e  energy  analog 
signals that 

I1 f- 

(32) 

where X(w), H’(w), and H(o) are the  Fourier  transforms of 
x ,  h’, and h respectively. By replacing X(o) in  (32) by its 
maximum value and  substituting  the  result  into  (3  1) we obtain 

(33) 

Alternatively, we can replace IH‘(o)  - H(w)l in  (32) by its 
maximum value to obtain 

IIx’- XI1 < - h l ‘ x l l  max IH‘(~) - H(w)l. (34) 
1 - r  

In the  important special case  of bandlimited signals, the 
above bounds  on 11 x’  - x11 can be converted to  bounds on 
I x’ - x I using the  inequality, 

1x1 < 4 m l l x l l  (35) 

which holds  for  any signal whose Fourier  transform vanishes 
above a  frequency [4], [ 5 I .  It should be clear that al- 
though  (32)-(35) were obtained  for analog  one-dimensional 
signals, very  similar equations  could be obtained  for  discrete 
or  multidimensional signals. 

These bounds  indicate  that  the  iterative  procedure is stable 
in  the sense that if the errors  in y ’  are  small, then  the  error 
in x’  will also be small. Unfortunately,  such  bounds  are  not 
particularly  useful in predicting the detailed  properties of the 
resulting  error. An example  illustrating this point is given in 
Section IV.  However, these  inequalities do suggest that  the 
key to  reducing the  error IIx’ - x11 is to reduce lly‘ - yl l ,  i.e., 
we should try  to make the given signal and assumed distortion 
model  be consistent. In Section IV it is shown  that  this  can 
sometimes be  achieved  by  increasing the  distortion  in  a  known 
way prior to  the restoration  iteration. 

111. A SURVEY OF ITERATION SCHEMES 
Many  researchers  have  investigated iterative  restoration 

schemes that can be shown to be special cases  of (1 2). In this 
section we shall call attention to a  number of these schemes, 
and we shall show  how  the  results of the previous section  can 
be  applied to determine  conditions  for convergence. Although 

we  have uncovered  many references to iterative  approaches 
that  fit  into  the general framework of Section 11, we  are not 
willing to  speculate as to who  first applied the iterative  ap- 
proach to specific signal restoration problems. Therefore, 
instead of a chronological order,  the  order of presentation  in 
this section is such that schemes that have much  in  common, 
such as similar constraint  or  distortion  operators, are  discussed 
together. 

A .  Bandlimited  Nonlinear  Distortion;  Bandlimited  Constraint 
Landau and Miranker [4], [ 51 considered the problem of 

recovering a  bandlimited signal that has been distorted by a 
bandlimited  nonlinear system. This problem was also con- 
sidered by Zames [ 61. Sandberg [ 71 has  considered a  more 
general  version  of this problem. In this case, the  constraint 
operator was the bandlimiting  operator B as defined in (4), 
and the  distortion  operator was  assumed to be a memoryless 
nonlinearity  with output 0 x ,  followed  by bandlimiting; i.e., 

y = B O X .  (36) 

This distortion  operator was proposed as a  model for trans- 
mission  of companded signals over a  telephone  channel. It 
may also be an  appropriate  model  for  nonlinearities  inherent 
in many  image formation  and digitization systems [8]. After 
nonlinear companding,  the signal, +x,  is no longer band- 
limited to  the original frequency  band. In fact, it may not 
be bandlimited at all. If this signal is later  bandlimited, the 
question  naturally arises as to whether  it is possible to recover 
x from y .  Landau and Miranker [41, [SI showed that x could 
indeed be  recovered from y using the following iteration 

x0 = Ay (374  

xk+l = XU + Xk - hBOXk. (37b) 

By substituting D = B * and C = B into  (1  2) and  expanding the 
operator C = (I - AD) C, we obtain 

x0 = hy (384  

Xk+ 1 = h y  i- BXk - hB*BXk. (38b) 

Note, however, that  any signal  passing through  the  distortion 
operator D is bandlimited.  Therefore, since x0 = XBOx is 
also bandlimited, it follows that all of the approximations, Xk 
are automatically  bandlimited  and that Bxk can  be replaced 
by xk in  (38b),  thereby  obtaining  (37b). 

Landau  and  Miranker 141, [ 51 studied  the  conditions for 
convergence and  uniqueness  in  a  style that we  have  followed 
in  Section I1 for  the general formulation.  They  showed that 
for convergence, i.e., for G = (I - AB 0)  B to be a  contraction, 
it must be true  that *’(x)  = d*/dx satisfy the inequality 

max I 1 - W ( x )  I < 1 
X 

(39) 

from which it follows that +’ and h must satisfy the conditions 

O < O ’ ( x ) < M < =  (404  

h < 2/M. ( 4 0 ~  

Error  bounds similar to those of Section 11-D are also given 
in 141 and will not be repeated here. The results of an analog 
implementation were also reported.  Although we  have not 
encountered  any  subsequent  applications of this iteration 
procedure to  discrete signals, it should be pointed out  that  the 



436 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 4, APRIL 1981 

inherent  bandlimited  constraint makes this scheme readily 
applicable to sampled signals. 

B.  Time  Limiting  Distortion;  Bandlimited  Constraint 

Several authors,  including Papoulis [91 ,  Sabri  and  Steenart 
[ l o ] ,  and Wiley [ 1 11 have considered the problem of itera- 
tively extrapolating  from  a f i t e  duration segment  of a  band- 
limited signal. In this case the  distortion  operator  for dis- 
crete signals (sequences) is the linear time-limiting operator 

At this  point it is necessary to  call attention to  an obvious 
but  important  point  concerning  bandlimited signals. First, 
it is well known that if an analog signal is bandlimited, it 
can be represented  without  error by  samples taken  at a  rate 
which  is at least twice the highest frequency in the signal. 
However, if we  sample at higher than  the Nyquist rate,  it 
would  be appropriate to say that  the sequence is bandlimited 
since its  Fourier  transform will be zero  for  frequencies in some 
range ac < o < n/T. Indeed, if we  wish to  apply  a bandlimi- 
tation  constraint to a  discrete signal representation (as in Sec- 
tion 111-A), then  the signal must be  sampled at a rate which is 
higher than  the  Nyquist  rate.  In  this case, the discrete  band- 
limiting constraint  operator is defined  by the  relation 

where T is the sampling  period and ac T < II. 
The  iteration  equation  for  these  conditions is 

x0 = Y  (434  

X & + l  = y + ( I -  T)BX&. (43b) 

In this case the parameter X which  appeared  in (12) is set t o  
unity since y ( n )  = x ( n )  for n, < n < nb and it makes no sense 
to alter these correct samples. In  this case, the  operator 
C = (I - T )  B is a  nonexpansive  operator as we shall show 
below. 

Since ( I -  T )  is a linear operator, we can  write  for the 
Euclidean norm 

11 G x ~  - CX~II = 11 (I - T )  ( B x ~  - Bxi)I( 

where 

w ( n )  = 
1, n , Q n Q n b  

0, otherwise 
(45 1 

and j;i = Bxi and 21 = Bxp This sum  can  be  decomposed to 
give 

Clearly  we can  write 

II c x i  - C X ~  II Q rl  II Bxi - Bx/ II (47) 

where 0 Q rl G 1  with  strict  equality  holding  in  (47)  only if 
x"i(n) and ;j(n) are  identical  in the interval n, < n Q nb .  Now 
using  Parseval's theorem, we obtain 

IIBXj - Bxtll= - I X i ( e W  - Xi(eiWT)IZ do . I: 1:: Y 
(48) 

where Xi(ejwT) and Xi(e iwT)  are the  Fourier  transforms  of 
the sequences x i (n )  and xi(n) .  From (48) it follows that 

II Bxi - BXjll < rz II xi - xill (49) 

where 0 Q rz Q 1, and r2 = 1 only if Xi(e iwT)  and Xi(e iWT)  
are identical in the band 52, < Io1 < n / T .  Thus  the  discrete 
operators (I - 2') and B are both nonexpansive  and 

I1 Cxi - Cxill Q r l r z  * llxi - xill (50) 

where 0 Q rl  r2 Q 1. That is, the  operator C is nonexpansive. 
The corresponding  manipulations of the norms for  the con- 

tinuous or analog  case would be essentially the same as the 
above except  the sums in  (44)  and  (46) would be replaced by 
integrals. In  this case it can  be  shown that rl  and r2 cannot be 
simultaneously  equal to  unity  and  thus  the  operator ( I -   T ) B  
is strictly  nonexpansive  and convergence to a  unique  fixed 
point is guaranteed [3] .  To see this, note  that  strict equality 
holds  only if Bxi and Bxi are  identical over a  finite interval. 
This is impossible  since their  difference would be  bandlimited 
and also identically  zero over a  finite interval, a  condition 
which violates the Paley-Wiener criterion.  Thus in the analog 
case it is clear that  the  operators B and (I - T )  work together 
to  insure that  the  iteration converges.  Papoulis [9] has also 
shown convergence  by alternative  methods. 

In  the discrete case, the above argument  does not  hold.  In- 
deed, it is possible to  show that knowledge  of a  finite  set of 
samples  of a  discrete  bandlimited  sequence as in  (41) does 
not uniquely specify the sequence everywhere. In  the Ap- 
pendix it is shown that it is always  possible to  find  a  discrete 
bandlimited  sequence  which is identically  zero over any 
finite  interval of  samples. Indeed  there  are  an  infinite  number 
of such  sequences having a given bandwidth. Since such  a 
sequence  could obviously be  added to  the original bandlimited 
sequence x(n) ,  leading therefore to  the same sequence y (n) ,  it 
is clear that  the result in the discrete case cannot be uniaue. 
Indeed it might be  expected that this would lead to severe 
noise sensitivity problems  with  this  algorithm. 

Since the  operator C = (I - T )  B is linear, the results of  Sec- 
tion 11-C apply  in this case and closed-form  expressions can  be 
derived. Sabri  and  Steenart [ 101  have proposed  a  matrix  for- 
mulation of the  extrapolation problem based upon  (22)  and 
(23).  Although  such an approach is appealing, and  indeed sug- 
gestive of the possibility of an exact  solution,  a word  of caution 
is in  order.  The  operation of bandlimiting  produces a sequence 
of infinite  duration.  In  implementing  this  operation using 
methods based upon  the  finite discrete Fourier  transform,  one 
must be  aware  of inherent  'wraparound'  or aliasing effects that 
do not permit  an  exact  solution  except  when the sequence x is 
a  periodic  sequence. 

A similar approach to  the extrapolation of a b a n h t e d  sig- 
nal was proposed by  Cadzow [ 121. This approach was  based 
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Fig. 1 .  Region in the  complex H(ejwT) plane for which  convolution 
with S - Ah is a contraction. 

on  the  functional  equation 

x = ( I - B T ) x + B y  (51) 

which  a  first glance appears  distinct  from 

x = y  + ( I -  T ) B x  ( 5 2a) 

upon  which (43) is based.  However, application of the band- 
limiting operatnr to  both sides of (52a) gives 

B x = B ( I -   T ) B x + B y = ( I - B T ) B x + B y .  (52b) 

Because both B and I are  linear  operators,  it  can  be seen that 
if an  iteration  scheme based upon  (51) is started  with  a band- 
limited  initial  approximation By, as is shown to be  necessary 
by Cadzow,  it will  lead to  exactly the same set of iterates as 
the  iteration  scheme based upon (52a). However, as Cadzow 
points out [ 121 the  order of operations implied  by ( 5  1) may 
have  advantages for  discrete  implementation. 

It is perhaps important to note  that  the flexibility of choice 
of the basic functional  equation  can  be  exploited to advantage 
in  obtaining convergent iterations. For example, if an  operator 
F is nonexpansive but has a f i e d  point x = F x ,  then  the equa- 
tion x' = (1 - a) x0 + aFx'  will  have a  unique f i e d  point  that 
can be  obtained by  successive substitutions if 0 4 a < 1. It 
has been  shown [ 131 that if the  function space is a Hilbert 
space, then  the x' + x  as a + 1. 

C.  Linear  Shift-Invariant  Distortion 
If the  distortion  operator is linear and shift-invariant so that 

y = h * x  (53) 

where h is the impulse response of the distorting  system, then 
the  restoration  problem is commonly  known  as  the deconvolu- 
tion problem. Using this distortion  model, we obtain  from  (1 2) 
the class of iterations  for  constrained  deconvolution 

x0 = Ay (544  

x k +  1 + 4  * c x k  (54b) 

where 4 = 6 - hh and 6 represents  a  unit impulse. 

be obtained by  considering for discrete s i g n a l s  
The  conditions  for convergence  of this class of iterations  can 

by its maximum value 

rl = max lQ(ejWT)I (56) 
W 

then 

114 * (Cxi - C3)II g rlllCxi - C3II. (57) 

Now suppose that  the constraint  operator satisfies the  condition 

llCxi - C3II G r2 11% - 311. (58) 

Combining (57) and (58) leads to 

114 * (Cxi - CXj>II 4 rlrZII3 - xjll. (59) 

Clearly, the  operator G = ( I -  AD) C will  be a  contraction if 
at least one of the  operators (I - AD) and C is a  contraction 
and the  other is nonexpanding. 
In the deconvolution case, a  sufficient  condition for (I - AD) 

to be  a  contraction is 

lQ(eiwt)l = I1 - AH(eiWT)I  < 1, lo1 < n/T. (60) 

This condition is depicted  in Fig. 1, which  shows that 
AH(eWT) must  be confied  to  the interior of a circular re- 
gion of unit  radius  centered at  unity. Assuming that A is real 
and positive, it is clear from Fig. 1 that  in  order to satisfy (60), 
it is necessary that 

Re [H(ejWT)I > 0. (61) 

If (6 1) holds, it is clear that h can be  chosen so that  (60) holds. 
For example, if H(ejWT)  is real and positive (implying that 
h(n)  has the properties of a  discrete  autocorrelation  function) 
then it is easily seen that A must  satisfy 

O < A <  
2 

max [ ~ ( e j w T ) ] '  (62) 

To fully  determine  the requirements  for convergence  of the 
constrained  deconvolution  problem it is necessary to consider 
the constraint  operator. At this point it is helpful to identify 
three special cases that have been discussed in the literature. 

1) No Constraints: Perhaps the earliest reference to  an itera- 
tion  scheme of the  type of (54) was by Van Cittert [ 141. A 
discussion  of this and other algorithms is given by  Frieden 
[ 15 I .  In this case the  constraint  operator was the identity o p  
erator which is obviously  nonexpansive.' Thus the conditions 
for convergence of  the  iteration are that H(e jWT)  satisfy  (60) 
and (61)  and  that A obey  the  conditions of (62) if H(e jWT)  is 
purely real. It should be noted  that in this case, the  operator 

w 
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Thus  it is clear from  (63)  and  (64)  that if H ( e M T )  satisfies 
(601, then 

lim X H , ( e j q  = - 1 
k + -  H ( e M T )  

Le., with  no  constraint, the iterative  procedure converges to 
the same  result as would be  obtained  with an inverse fiter. 
Note  that  the  condition  that  guarantees convergence of the 
procedure also guarantees  that IH(ejWT)I > 0 so that  the in- 
verse fi ter exists for all w. 

In cases  where (60) or (61) are not satisfied, convergence of 
the  unconstrained  iteration  cannot be guaranteed. However, if 
a constraint  operator is present, which is a  contraction, it is 
only necessary that  the  operator (Z - AD) (i.e., the impulse re- 
sponse q = 6 - Ah) be nonexpansive. In this case the  condi- 
tion on H(ejwT) of (60) becomes 

I1 - XH(efwT)I < 1, IwI < r / T  (66) 

so that H(eiwT) = 0 is now  permitted. This is an important 
point since it implies that  with  appropriate  constraints  it  may 
be possible to restore  frequency  components  that  were  lost  by 
bandlimiting  or  other  frequency selective filtering  distortions. 
Thus  it may be possible to deconvolve even in  those cases where 
the inverse filter does not  exist.  Examples of such  constraints 
are given below. 

2) Finite  Support  Constraint: Suppose that  it is known  that 
x has finite support; i.e., 

x ( n ) E O ,  n < n , ,  n >?ab. (67) 

The  appropriate  constraint  operator is the  operator T which 
was defined  in  (41).  The  resulting  iteration  equations  then 
become, 

x0 =xv (684  

xk+ 1 = b' 4 * TXk (68b) 

where q = 6 - Ah. Iteration  schemes of this form  (with X = 1) 
have been  studied  by Gerchberg [ 17 J and h o s t  and  Goutte 
1181. 

If (60) holds, then  a sufficient  condition for convergence of 
the  iteration of (68) is that T be nonexpansive. The  iteration 
will stiU converge if (66)  holds and T is a  contraction. Because 
T is a h e a r  operator,  it is easily shown  that 

II Txi - Trill = T Z  llxi - 311 (69) 
where 

(70) 

Clearly, 0 < r2 < 1, with rz = 1  only if xi and xi have finite 

support in na < n < f l b .  Thus  the  iteration will converge if 
(60)  holds  and  it may converge if (66) holds. The significance 
of the  latter possibility is explored  in  more  detail below. 

3) Positivity  Constraint: In many areas of practical  interest, 
such as image processing and  spectroscopy, it is sensible to im- 
pose a positivity (or  nonnegativity)  constraint.  That is, it may 
be known  that 

x ( n ) > O ,  -=<?I<=. (71) 

Such a  constraint can be expressed by the positivity operator 
P def ied  in (5). Indeed  it may be reasonable to impose  both 
the positivity  and r i t e  support constraints [ 19 1 4 2 1  1. To 
examine  the effect of the positivity  operator on convergence, 
we must  consider 

1 

By considering four special cases (such, as, for example, the 
case where both x&) and x@) are nonnegative) it is easily 
shown  that 

IP[xi(n)J - P[?(n)l I < Iq(n) - ?(")I- (73) 

Therefore,  it follows that 

IlPXi - P3ll < r2 llxi - qll (74) 

where 0 < r2 < 1.  It is clear in  this case that rz = 1  only ifxi 
and 3 are both nqnnegative. Thus as in the case of  the  finite 
support  operator,  the  iteration scheme 

x0 =xv ( 7 5 4  

xk+l  = b + q  *Pxk (75b) 

will converge if (60)  holds  and it may converge if (66) holds. 
The  effect of either the  finite  support  or positivity (or  com- 

bined)  constraints is particularly  interesting  when h ( n )  is the 
impulse response of a  bandlimited  system. In this case (66) 
holds  with equality for values of w in the  stopband of the sys- 
tem (H(e*T)), so that  it is essential for  the convergence of 
the  iteration  that  the  constraint  operator be a  contraction. 

As an example,  suppose  that x is known to be positive and 
to have finite  support.  Then  the  appropriate  iterative  equation 
is 

x0 = b  ( 7 6 4  

x k + l  ' ) l v + q  *PTXk (76b) 

where q = 6 - Ah. (Note  that  the  operators  Pand  Tcommute.) 
Now suppose that h(n) is the  impulse response of an ideal low- 
pass fi ter with  frequency response 

H ( e N T )  = 
1, lwl<St, 
0, St, < 101 < n/T. (77) 

Clearly, the  contraction  condition of (60)  holds for 0 < X < 2 
for Iwl < a,, but  (66)  holds  with  equality  for 52, < 101 < r / T  
no  matter what value 'of X, is used. Thus, let us choose X = 1 
since it leads to a  straightforward  interpretation of the itera- 
tive relations expressed in (76). 

In this case, the  frequency response corresponding to q ( n )  is 
the ideal high-pass filter  with the  frequency response 
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The  initial  approximation is simply y = h * x .  It is clear that 
y will  have i n f i t e  support even though x has finite  support. 
Also even if x is positive, it is possible that y will be negative 
since h(n)  oscillates between positive and negative values. A 
simple example is a finite  duration  sequence x composed  of  a 
train of positive impulses, such as 

M 
x ( n ) =  am6(n - n m )  (79) 

m = l  

where 0 < a, for m = 1, 2, * - * , m. The  result of  convolving 
this x with  the  impulse response of an  ideal low-pass filter is 
neither of f i t e  duration  nor is it nonnegative. The  first ap- 
proximation is 

x1 = y  + q  * PTy. (80) 

Without the  constraint  operator PT, (i.e., in  the Van Cittert 
case) nothing  happens. To see this, note  that Q ( e M T )  and 
Y(ewT) are  disjoint, so that x 1  = y and  indeed xk = y for all 
k. If H ( e M T )  was bandlimited,  but  not  perfectly  flat  in  the 
passband, then  the Van Cittert iteration would  restore the pass- 
band,  but  not  the higher frequencies. Thus as in the  example 
of  Section 111-A, there is a built-in bandlimitedness  that propa- 
gates from  iteration to  iteration. With the explicit  constraints, 
however, it is easily seen that PTy will have energy beyond  the 
cutoff  frequency QC. This energy is passed by the highpass fil- 
ter q and, as seen in (80), these high frequencies  are  added to 
the low  frequencies  in y to produce  the first  approximation, 
x * .  The process is then  repeated.  Each  iteration  thus  produces 
additional high-frequency components to add to  the low f r e  
quencies provided by y .  

The  constraints thus offer the possibility of restoring high 
frequency  information  that has been  lost  in the linear shift- 
invariant  distortion process. Note  that x k ,  the  input to  the 
constraint operator PT, will only  satisfy the constraints in  the 
limit, so that  fori and j finite 

IlPTXi - PTqll G rz 11% - x j l l  (81) 

with 0 < rz < 1. Thus, if X is chosen to satisfy (66), conver- 
gence to a  solution satisfying x = PTx and y = h * x is guaran- 
teed. C o n f i a t i o n  of the fact that  the  bandwidth can be ex- 
trapolated  in  a sensible way is provided by the examples of 
Section IV. 

D. Constraints on a Signal and  Its Fourier Transform 
In a variety of problems  (particularly in optics) the physics 

of signal generation implies certain  constraints on  the observed 
signal and  its  Fourier  transform.  For  example, in optical sys- 
tems  it is possible to measure the  magnitude of a signal (wave 
front)  and  its  Fourier  transform,  but  measurement of the Dhase 
of either is very difficult. In such  a  situation,  the distortion 
and  constraints  are  intimately  related. For  example, consis- 
tency  with  a  known  magnitude is a constraint, while unknown 
phase can be  thought of as a signal-dependent distortion,  and 
vice  versa. Gerchberg and  Saxton  [22]  proposed  an iterative 
algorithm  for  the  reconstruction of a  complex  or bi-polar signal 
(image) from  its  magnitude  and  the  magnitude  of  its  Fourier 
transform.  Fienup [ 231 , [ 241 has considered iterative algo- 
rithms  for  reconstruction  from  the  magnitude of the  Fourier 
transform of a signal under  the  constraint  that  the signal is 
positive. 

Hayes, Lim, and Oppenheirn [25] have discussed algorithms 
for  the  reconstruction of signals with  finite support  from either 

the phase or  the  magnitude of the  Fourier  transform.? These 
and other similar iterative  algorithms can be  shown to fit into 
the general framework of Section 11. 

To illustrate  this class  of algorithms,  suppose  that  either  the 
magnitude  or  the phase of the  Fourier  transform  of  the signal 
x is known  but  not  both. Also assume that prior  knowledge 
of  the  properties of the signal can be expressed as a  constraint 
operator; e.g., x may be known to be positive or to have finite 
support  or  both.  The  distortion can thus  be  represented  in  the 
Fourier  domain as 

Y=DX (82) 

where X and Y are the respective Fourier  transforms of the de- 
sired signal x and the distorted signal  y .  That is, if only  the 
magnitude of X is known,  then  the  operator  D could be d e  
fined by 

y = 1 ~ 1 = ~ . e - i a r g [ X l   ( 8 3 d  

or if only  the phase is known 

y = e i  a% [XI = x/lxl. (83b) 

Clearly the distortion is nonlinear  and signal-dependent in 
both cases. 

The  constraint operator C can be most conveniently repre- 
sented  (and  implemented) as the cascade of a  Fourierdomain 
constraint  operator, C,, and a  signaldomain  operator Cs. The 
signal-domain constraint  may be f i t e  support [25] or posi- 
tivity or whatever is appropriate.  In  the case where the magni- 
tude  of  the  Fourier  transform is known  (corresponding to  the 
distortion of (83a))  then  the  Fourierdomain  constraint is im- 
plemented as 

where 1x1 is the  known  magnitude of the  Fourier  transform 
and uk is the  Fourier  transform of the  input to  the Fourier- 
domain  constraint  operator. In the case where the phase is 
known, the Fourier-domain constraint  operator  would be im- 
plemented as 

vk = CFuk = I uk l  ei (84b) 

where arg[X] is the  known phase. 
It  turns  out  that  the  two different orderings of the  Fourier- 

domain  and  signaldomain  constraint  operators  lead to two 
different  iteration  equations. If C = CsS-' CFS, where S is 
the  Fourier  transform  operator,  then  the general iteration equa- 
tion can be represented  in  the  Fourierdomain as 

x0 = XY (854  

where D is def ied as in either (83a)  or  (83b).  The  operations 
of (85) are depicted in Fig. 2. 

If the constraints  are  applied  in reverse order, i.e., C = 
F -' CFSCS, then  the  Fourier-domain  iteration  equation is 

x0 = XY 

nal design algorithms. For example,  constraining  the magnitude of the 
It should  be  noted that  such  algorithms  can also be thought of as sig- 

Fourier transform is equivalent to  constraining  the  autocorrelation 
function of the  signal. Thus the algorithms discussed in this section 
may  be uaehl for  designing  signals with prescribed autocorrelation 
functions  along with other prescribed properties. 
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i cF I 

L-  x, = hY 

Fig. 3. Block  diagram of a  simpler  algorithm for constrained recon- 
struction  from  the  magnitude or phase of the Fourier transform. 

where -fk is the  Fourier  transform  of  the  output of the con- 
straint  operator; i.e., 

z k  = CFUk ( 8 6 4  

where 

u k  = s csxk. ( 8 6 4  

In both  the  known-magnitude  and  known-phase cases, no mat- 
ter  how  the  iteration is started,  and independent of the  iteration 
number,  it can be  seen that  the  term in (86b) can be ex- 
pressed as 

XD-f, = ADCFUk = AY. (87) 

This is because the distortion  and  the Fourierdomain con- 
straint  are  intimately  related for  both  types of distortions. For 
example, if known-phase is the  Fourierdomain constraint, then 
the combined  operations DC' will always produce  a  Fourier 
transform  with  unity  magnitude  and phase equal to  the known 
phase. 

Substituting  the  result of (87)  into  (86b)  and expressing 
the  iteration  equation in  terms of signaldomain  quantities we 
obtain 

x,, = )Lv = A F ' D Y x  (88a) 

%k+ 1 = cxk = S-'CFsCSXk. (88b) 

The  operations of (88) are depicted  in Fig. 3. It is this simpli- 
fied form of the phase (or  magnitude)  algorithm  that is nor- 
mally considered [23] -[ 251, since the  other  form,  equation 
(85), clearly requires  more  computation per iteration. 

In  implementing  either  (85)  or  (88), we must  implement 
the  Fourier  operators F and S-' . For discrete one-dimensional 
signals, these  operators can be approximated  adequately  by 
finite  discrete  Fourier  transforms [ 251. Indeed, if the signal is 

known to have finite support,  then  it has been shown  that  it is 
theoretically possible to recover the signal exactly using the 
discrete  Fourier  transform [ 251 . 

It can be seen  from  (88)  that convergence of the iteration will 
depend  only  upon  the  properties of the  constraint  operator. 
To  demonstrate  that  the  known-phase  constraint  coupled  with 
a nonexpansive constraint  such as finite  support is nonexpan- 
sive, we consider 

IICxi- CxiII= IIS-'CFUi-S-lCFUjll (89) 

where Ui = S Csxi and Ui = SCsxi. Applying the  Fourierdo- 
main  constraint  operator as in (88b) we obtain 

1lcxj-  cxi[l= 1 ~ 1 1 ~ i l e j a I ~ l  - F - ' I U ~ ~ ~ ~ * [ ~ ] I I .  

(90) 

Assuming a Euclidean norm  and using  Parseval's theorem,  the 
right-hand side of (90) can be expressed as 

IlCXj - Cxjll = {i - I:,: /I ui(e*T)I - I q(ejWT)I  2 dw I Y 2  

(91) 

Using the triangle inequality  and Parseval's theorem again we 
can show 

II cxj - Cxjll < II s-' uj - 9-1 Uill (92) 

with  equality  only if arg [Vi] = arg [Ui]  + 2nk for  some in- 
teger k. Therefore, 

llcxi - C+ll < 11 IlCsxi - Csqll (93) 
where 0 Q rl < 1. Thus we have shown that C, is nonexpan- 
sive. If either the positivity or  finite  support constraints  are 
used for Cs, these  are also nonexpansive, as we have already 
seen. 
In problems of this type where  constraints  are  imposed  inde- 

pendently  in  both  the signal domain  and  the  Fourier  domain, 
it is essential that  these  constraints be consistent  and that 
there be a  unique signal that satisfies both constraints. For ex- 
ample, consider  the case  of known phase with  a  finite  support 
constraint in the signal domain. Clearly the set of signals whose 
Fourier  transform has a given phase is infinite  and likewise 
there  are  an i n f d t e  number of signals that are  nonzero  in  a 
given region of support.  The  constraints  are  consistent if there 
is at least one signal that satisfies both constraints. On the 
other  hand,  the  constraints may be consistent  but  they may 
not  uniquely  define  the signal. In this  example, if the  known 
phase function has a linear  component  corresponding to one 
or  more  sets of four reciprocal zeros in  its  z-transform,  then  it 
will  be impossible to reconstruct x from  knowledge of the 
phase and  finite support region alone since any  set of four re- 
ciprocal zeros will produce  the same linear phase component. 
This issue is treated  in  detail  by Hayes, Lim, and  Oppenheim 
[ 251 who give conditions  for  unique  reconstruction  from phase 
or  magnitude.  Their  finding is basically that  a  unique  recon- 
struction will occur if none of these  reciprocal zeros are present 
in the signal. 

Iv. IMPLEMENTATION AND APPLICATION OF THE CLASS 
OF  CONSTRAINED DECONVOLUTION ALGORITHMS 

In  the preceding sections we  have  discussed a general ap- 
proach to constrained signal restoration,  and we  have de- 
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scribed  several  special  cases of the general scheme. In  this sec- 
tion, we  shall consider the implementation  and  application of 
one of these special  cases-the  class  of constrained discrete de- 
convolution iterations. We begin with a discussion of some de- 
tails of the implementation of the  iteration scheme. Then we 
describe the  application  of  the  method to  the problem of im- 
proving the  resolution of gamma ray  spectra. We conclude 
with a discussion  of  convergence and the  effects of  noise.  Al- 
though we specifically focus  upon constrained deconvolution, 
it will be clear that many of the issues  raised in  this section 
also  arise in  the implementation  and application of the  other 
special  cases  discussed in Section 111. 

A .  Implementation 
The problem of recovering the  input to a linear system from 

the system output and knowledge about  the system (and pos- 
sibly the  input) arises in many situations. Generally an appro- 
priate model is a continuous variable (analog) convolution of 
the  form 

Y . ( t ) = ~ w X . ( 7 ) h . ( f  -OD - 7)dT (94) 

where x, ( t )  is the  unknown  input, y , ( t )  is the  known  output 
and h, ( t )  is the  (known) impulse response of the linear system. 
Often the linear system passes only a finite  bandwidth; i.e., the 
Fourier  transform of h,( t )  is bandlimited  such that H,(o)  0 
for 101 2 52. Therefore, y,( t )  can be  sampled to  obtain  the se- 
quence y ( n )  =y,(nT), and if n/T 2 52, no aliasing  will occur. 
Likewise, h , ( f )  can be sampled with the same period (also with- 
out aliasing) thereby  obtaining  the sequence h(n) = ha(nT).  
Under conditions of no aliasing  we can easily  show that  the.se- 
quence of samples obtained by sampling y , ( t )  also  satisfies the 
discrete convolution equation 

y ( n )  = 1 x ( m )  h(n - m )   = x ( n )  * h(n) (95) 

where h ( n )  is the sequence of samples of h,( t ) ,  and x ( n )  = 
:,(nT), where 

00 

m =-w 

OD 

?,( t )  = Jw xa(7)  K,(r - 7) d7 (96) 

and &(t)  is the impulse response of a bandlimiting filter  such 
that 

For example, K,(t) could be the impulse response of an ideal 
bandlimiting filter  with  bandwidth greater than  or equal to the 
bandwidth 52 of the linear system h,( t ) .  Clearly the  solution 
of (95)  for x ( n )  cannot be unique, since h, is not unique. 
However, if we  have prior knowledge of the  properties of 
x, ( t ) ,  we may be able to restore  the signal frequencies beyond 
w = 52 by using the iterative schemes of (54) with an  appro- 
priate constraint  operator. If  we choose to apply the iterative 
deconvolution scheme to the discrete representation of (95), it 
is obvious that  the best that we may hope  for is to restore  the 
desired  signal in  the band of frequencies IwI < n/T. This  band 

can  be made arbitrarily wide  by choosing a high  sampling rate 
(small sampling interval). However, practical considerations 
often  dictate  the use of the smallest  possible  sampling rate 
(n/T = 52) so as to minimize the number of samples that must 
be taken. In such cases it is  necessary to increase the sampling 
rate  after  the initial sampling through the process of interpola- 
tion. This can  be accomplished by discrete linear filtering; the 
details are given in [27]. Using these techniques,  both  the im- 
pulse response sequence h and the  output  sequencey would be 
interpolated using the same interpolation  filter. If the  inter- 
polation  filter has high attenuation  at frequencies above w = 
52, then  the  interpolated  output can  be represented accurately 
as 

r(n) = x ( m ) h ( n  - m )  (97) 
OD 

m = -w 

where 

~ ( n )  = ~ o ( n T )  * hi(n) (984  
h ( n )  = h,(nT) * h t ( n )  (98b) 

x ( n )  = :,(nT). (984  

In  (98), hi (n )  is the impulse response of the  interpolation filter 
and the new  sampling interval is T = M T ' / L  where 2" is the 
original  sampling interval. (Note:  Interpolation is most con- 
venient if M and L are integers [ 271 .) It is interesting to  note 
that  for a nonideal interpolation filter hi(n) the sequence y (n) 
will not. be identical to  the sequence y , (nT)  that would  be ob- 
tained  by directly sampling y,( t )  with period T. This is be- 
cause of the  extra filtering of the  interpolation  filter; however, 
this does not present a problem since both  the  output and the 
impulse response are filtered by the same filter. Thus, the  in- 
terpolation  filter need not have an  extremely sharp cutoff 
since its  effect  in  the band IwI < 52 will  be  removed by the de- 
convolution procedure 

x0 (n) = Xr(n) (994  

X k + l ( n ) = b ( n ) + q ( n )  * C[xk(n)J (99b) 

where 4 (n) = 6 (n) - Ah (n). 
The implementation of (99) is  seen to involve the discrete 

convolution of 4 (n) with C [xk (n) J . This convolution can be 
implemented  directly, or when 4 (n) and c [ ( x k ( n ) ]  are f i i t e  
length sequences the convolution can  be implemented by mul- 
tiplication  of discrete Fourier  transforms [ 26 J . In some cases, 
the bandlimited nature of the combined  distorting system and 
interpolation  filter may result in  an impulse response that is 
very long, and thus  rather large discrete Fourier transforms 
may  be required to minimize wraparound  effects in the dis- 
crete  convolution. 

An example of the performance of the iterative deconvolu- 
tion algorithm on  synthetic  data is depicted in Fig. 4. The 
output sequence, y ( n ) ,  shown in Fig. 4(a) was obtained by 
convolving the  input sequence 

x ( n )  = 6(n - 30) + 6(n - 38) ( 100) 

with the impulse response 
h(n) = Ae-(n'/O') (101) 

where A = 0.09974, and u = 4 samples. The magnitude of the 
Fourier transform of y ( n )  is shown in Fig.  4(b). Note from 
the graph of Y(ejwT)  thaty(n) is  sampled at  about four times 
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Fig. 4. Positive-constrained deconvolution of  synthetic data. (a) 

after 25 iterations of  (99).  (b) Fourier transforms of  the  sequences 
Gaussian-blurred impulse pair y(n)  and the result xZ5(n) obtained 

in (a), showing  the  reconstruction of the high-frequency information. 

the sampling rate needed to  avoid aliasing. By using h ( n )  given 
by (101) andy(n) as  shown in Fig. 4(a), in (99) with X = 2 and 
the positivity constraint  operator P of ( 5 ) ,  the result ~ 2 5 ( n )  of 
Fig. 4(a) was obtained  after  25  iterations.  It is clear from Fig. 
4(a) that a good approximation to x ( n )  has been obtained  and 
Fig. 4(b) shows that  the high-frequency  region has  definitely 
been “filled in” by the iterative  procedure. Carrying the itera- 
tion  further leads to  greater sharpness  of the impulses or equiv- 
alently to a  more  faithful  representation of the high frequen- 
cies. We have found  that  the high frequencies  are  reconstructed 
in a sensible way  by the constrained  iteration. By this we 
mean that  the “arbitrary” region in  (97b) is reconstructed in a 
way that is consistent  with the  constraints  and  the  known dis- 
tortion operator. 

A second example is shown  in Fig. 5 .  In  this case, the  two- 
dimensional  Gaussian sequence of Fig. 5(a) 

is convolved with the sequence 

x ( m , n )  = [6(m - 24)+6(rn - 34)l 6(n - 32)  (103) 

to produce  the  two-dimensional  sequence y(m, n )  of Fig. 5(b). 
The  iterative  equation in two-dimensional  form is 

x o b ,  n) = X v h ,  n )  (1  04a) 

Xk+l(m,n)=Xv(m,n)+q(m,n) * * C [ ~ k ( m , n ) l  

(1 04b) 

where q ( m ,  n )  = 6 ( m )  6 ( n )  - Xh(m, n ) ,  ** denotes  twodimen- 
sional discrete  convolution,  and C[ 1 denotes  the combined 
positivity and  finite  support  operator.  The result of 65 itera- 
tions is shown  in Fig. 5(c). 

We should recall that  (99) and (1 04) represent  a  solution to  
the discrete  deconvolution  problem. A fundamental  question 
arises when we attempt to relate the solution x ( ! )  to  the un- 
derlying  analog signal x ,  (t) .  In  the case  of the  example of Fig. 
4  and for  the gamma-ray spectra to be  discussed next,  it is rea- 
sonable t o  assume an underlying  analog  model  with 

where 6 , ( t )  is the impulse  function  and  the  areas of the im- 
pulses (the parameters { a k } )  are positive.  his signal clearly 
satisfies both  the  finite  support and positivity constraints. 
Only under very special circumstances, however,  will it be  pos- 
sible to  obtain  a  sequence of  samples  of a  bandlimited version 
of x a ( t )  that will satisfy both of these  constraints.  This can  be 
seen  by  considering the ideal bandlimited version 

It is easily  seen that if !2 = n/T and if ?k = nkT where nk is  an 
integer, then 

N 

That is, x ( n )  is a  finite  length  sequence of  positive discrete im- 
pulses. If any  of  the analog  impulses do  not fall exactly on  the 
sample points, the sequence x ( n )  will be neither positive nor 
of finite  length. However, if x,( t )  is filtered by a positive  im- 
pulse response  with  finite  support (&(t) 2 O), then 

k = l  

yill be a positive sequence  with  finite  support. Of course, 
h,( t )  can not be bandlimited and also have finite  support. 
Since the bandlimitedness is a built-in assumption of the dis- 
crete  iterative  reconstruction  algorithm we  see that  there is a 
fundamental  limitation on  the accuracy  with which  we can re- 
construct  the analog signal x a ( t )  using the discrete  algorithm. 
Thus  although  the  iterative algorithm  can  give an  exact solu- 
tion  to  the discrete  deconvolution  problem, we must  in gen- 
eral  interpret  the  solution as samples of an  approximation to  
x, ( t ) .  In a  practical sense,  we will be content if the discrete 
solution  retains the basic structure of the underlying  analog 
signal. In  the case  of (102) this means that we should be  able 
to get accurate  estimates of the parameters (2k and ?k.  The  ap- 
plication of the constrained  iterative algorithm to a sampled 
signal is our  next  concern. 

B. Application to Gamma-Ray Spectra 
Gamma-ray spectra are typical of  many types  of physical 

measurements  where  a  line  (or impulse) spectrum is blurred by 
the  finite  resolution of the measurement  instrument. A rea- 
sonable model  for  such  spectra (signals) is the convolution of 
an  impulse train  function  as in (105)  with (2k > 0 and  a posi- 
tive blurring  function,  often of  Gaussian shape. An example 
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(c) 
Fig. 5. Two-dimensional  positive-constrained  deconvolution of  syn- 

thetic  data. (a) Gaussian  blurring function h(m, n). (b) The  sequence 
y(m, n) obtained by convolving h(m, n) with  an  impulse pair. (c) 
Estimate of  the impulse pair obtained  after 65 iterations  with h = 2. 

of a  portion of the gamma-ray spectrum of Inm Lu is shown in 
Fig. 6. Since a gamma-ray spectrum is a  plot of photon  count 
versus frequency,  the  index  n is proportional to energy ( E  = 
hv). As is readily seen in Fig. 6, this  model  appears to be ap- 
propriate  except  for  a slowly  varying background  radiation. In 
processing this signal, we  have  removed the background by fit- 
ting a  low-order  polynomial  through selected points of the sig- 
nal  assumed to  represent  background  radiation  only  and then 
subtracting that polynomial  before processing. Fig. 7(a) shows 
the segment labelled  “analysis segment”  in Fig. 6 after removal 
of the background  and  interpolation by 4 : 1. This is the blurred 
signal y ( n ) .  Fig. 7(b)  shows the isolated spectral line indicated 
in Fig. 6 after background  removal and 4 :  1  interpolation. 
This isolated blurred  spectral  line provides our estimate of 
h(n).  The remaining parts of Fig. 7  show various methods of 
restoration  applied to  y (n) .  

Fig. 7(c)  shows the  output of an inverse filter  implemented 
by  dividing the discrete  Fourier  transform of y ( n )  by the dis- 
crete  Fourier  transform of h(n).  The  transforms were  com- 
puted  with  1024  points to avoid  wrap-around effects  and the 
quotient of transforms was set to  zero for frequencies w > 
0.25(n/T) where the  Fourier  transform of h(n)  becomes too 

0 325” 
Fig. 6. A  portion of the gamma-ray spectrum of 177mLU.  The  shaded 

segments are expanded in Fig. 7. 

small. Note that  the  abrupt bandlimiting  causes large oscilla- 
tions  that  violate  the  inherent positivity of  gamma-ray spectra 
and tend to obliterate  the low-level spectral lines. 

Fig. 7(d) shows the result of 20 iterations of the iterative 
algorithm  with no constraints and x = 1  (Van Cittert’s case). 
Note that  the oscillations  are still in evidence although they 
are less objectionable than in Fig. 7(c). Recall, however, that 
if a large number of iterations were used, the result would  be 
the same as the inverse filter  result of Fig. 7(c). 

Fig. 7(e) shows the result of 20 iterations  with  the  finite sup- 
port  constraint  imposed  and X = 1. In  this case, the region of 
support can  be estimated easily from y ( n )  since y ( n )  is essen- 
tially zero  outside  a clearly defined interval. It can be Seen 
that, in this case, the  constraint does not  produce  a  noticable 
improvement in resolution and, as  expected,  it has no effect 
on the undesirable oscillations. The reason that  the  finite sup- 
port constraint  has  little  effect can be found in the discussion 
of Section 111-C1 . There the constraint  operator is directly re- 
sponsible for generating the  restored high frequency  compo- 
nents.  In  this case the assumed finite  support region is so wide 
that  its truncating  effect is negligible on  the signals generated 
by  the iterative  procedure. Thus  the constraint  operator C 
does not  function well as  a  contraction, and little high fre- 
quency energy is restored. 

Fig. 7(f)  shows the result of 20  iterations  with  both  the fi- 
nite  support  and positivity constraints imposed and h = 2. 
Here the  effect of the positivity  constraint is dramatically in 
evidence. The  resulting output has greatly enhanced resolu- 
tion  with no objectionable  artifacts. 

C.  Convergence 

In  Section 111-C it was shown that a  condition  for conver- 
gence  of the  iterative  deconvolution  algorithm of (99) is that 

11 - hH(eiwT)I < 1, IwI < n / ~  ( 109) 

provided that  the constraint  operator is a contraction. Assum- 
ing that h is a positive real constant,  equation  (109) implies, in 
turn, that 

In considering these  conditions  for convergence,  we must first 
check to  see if (1  10) is satisfied. If it is satisfied, it will  always 
be possible to  choose  a value for h that will ensure that (1  09) 
is satisfied. Otherwise no choice of h cah insure convergence. 
If (1  10) is not satisfied, it may still be possible to use the itera- 
tive approach,  as we shall see, but before  discussing the re- 
quired  modifications  let us first consider the choice of h when 
(1 10) is satisfied. 
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Fig. 7. Comparison of  deconvolution schemes on gamma-ray spectrum 

data. (a) The left  shaded portion of the  data in Fig. 6 after  back- 
ground removal and 4 : 1 interpolation. This is the sequence y(n). (b) 
The estimate of h(n) obtained from  the right shaded portion of Fig. 6 
after background removal, interpolation,  and normalization. (c) Out- 
put of the inverse filter  with cutoff  frequency wc = (0.25)(n/T).  (d) 

straints (Van Cittert’s algorithm). (e) Result obtained with A = 1 and 
Result obtained from the iterative algorithm with A =  1 and no con- 

a finite  support constraint. The region of support is 45 < n < 290. (f) 
Result obtained  with A = 2 and  both  finite  support  and positivity con- 
straints.  The sequences (d)-(f) were all obtained  after 20 iterations. 

In  the previous examples of Sections IV-A and B, the im- 
pulse response of the blurring system was either a perfectly 
symmetric Gaussian  pulse with positive  real Fourier  transform, 
or, in the case  of the gamma-ray spectra,  the  estimate of the 
impulse response was an isolated spectral line with very much 
the same property.  In applying the iterative algorithm, h(n)  
was normalized so that 

H(ejo) = h(n) = 1.  (1  11) 
h 

This ensures that the “areas” of the deconvolved  “impulses” 
are correct. Since H(eiwT) has a maximum value of 1 at o = 
0, it follows from  (62)  that 0 d X d 2 for convergence. The 
value  of X in this range that maximizes the  rate of convergence 
is the value that minimizes the maximum value of 

lQ(eiwT)I = I1 - XH(ejwT)I, Io1 Q n / T  (1  12) 

as can be seen from (56). If H(ejwT) is complex, finding the 

optimal value for X may be rather complicated but  for a low- 
pass system with H(eiwT) real and nonnegative as in the pre- 
vious examples  and normalized according to (1 1 I ) ,  it is easily 
shown that  the optimal choice is X = 2. 

To illustrate the effect of X on convergence rate  for signals 
such as those in Sections IV-A and IV-B, the Gaussian blurring 
impulse response of (1 0 1) 

was  convolved with a unit sample so that y (n) = h(n) in  the de- 
convolution  iteration. The resulting outputs become sharper 
with each successive iteration as depicted in Fig. 8. The width 
of the  output pulses is defined as the width at half the maxi- 
mum value and denoted Ak. In Fig .  9 the  quantity &/& is 
plotted as a function of k for various conditions.  The curve 
labeled A (dashed) shows A k / A o  versus k for X = 1, while 
curve B is for X = 2. Note that these curves  display the  type of 
geometric convergence that is typical of iterations-of  this  type. 
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0 1n 
Fig. 8. Illustration of the measurement of the  width of positive pulses. 

The width A is taken  at  one half of the peak of the pulse. 

1.0 f\ 

*k”O 

0.0 
10 20 50 100 2 a ) k  

Fig. 9. Convergence of the deconvolution  algorithm  with finite  support 
and positivity  constraints. This graph plots the normalized width of a 
single blurred impulse versus the  number of iterations  for various 
choices of A and prefilter cutoff frequency.  The  cutoff frequency of 
the prefilter is wc = (BWF)(n/T). (a) A = 1, BWF= 1.0. (b) A = 2, 
BWF>O.5.  (c)A=2,BWF=0.25.  (d)A=2,BWF=O.l.  

It can be  seen that  to achieve a given  normalized width re- 
quires about twice  as  many  iterations  with X = 1 as with X = 2. 
Since the iterative  process is very computationally  intensive, 
this is a significant impr~vement .~  

Let us now return to  the question of what  can be done when 
H(ejwT) does not have a nonnegative real part. A simple ap- 
proach is to filter both  the distorted signal y ( n )  and  the dis- 
tortion impulse  response h(n) with  an  impulse response h,(n) ,  
such that 

Re [H(eiwT) Hc(e iWT)]  2 0. (1 14) 

If such  a  compensating  filter can be found,  then  it will  be  pos- 
sible to  find  a h such that  (1 09) is satisfied with H(eiwT) re- 
placed  by H(eiwT) Hc(eiwT). There  are  many  compensating 
systems that will work; however, one  that will always  work is 

h,(n) = h*(-n)  (1 15) 

Janglon et d. [2S] have considered  ways of varying A in a signal de- 
pendent way so as to speed up convergence. 

where * denotes  complex  conjugation. Since for  this case 

H(eiwT) H,(ejwT) = IH(eiWT)IZ 2 0. (1 16) 

This choice also has  the advantage that  the resulting frequency 
response of the combined  system is real so that  it is easy to see 
from  (1 12) that  the  optimal choice of A is 

n 

W 

It should be pointed out  that  in  order to implement the con- 
volution of h,(n)  = h( -n)  with y ( n )  and h(n),  it must be true 
that h(n) has  finite  support. In practice  this may not be a seri- 
ous limitation because  of the  natural tendency for h(n)  to de- 
cay with increasing n. 

To illustrate this approach to insuring  convergence,  consider 
an impulse  response  of the  form 

h(n) = (1 18) 
otherwise. 
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(c) 
Fig. 10. Illustration of compensation to insure convergence.  (a)  The 

input  sequence y(n)  of  (120). (b)  Result  obtained  with  a  finite  sup- 

sult  obtained  with  finite  support  and  positivity  constraints.  (d)  The 
port  constraint.  Note  the  unstable growth of  the  oscillation.  (c)  Re- 

new input y(n)  after  convolution  with h,(n). (e) Result  obtained 
from  the  compensated  system  with  finite  support  constraint. (9 

sequences  in  (b),  (c), (e), and (9 were al l  obtained  after 25 iterations 
Result  obtained  with  finite  support and positivity  constraints.  The 

with A = 2. The region  of  support was restricted to  45 6 n 6 77 .  

The corresponding Fourier  transform is 

which does not satisfy the  contraction  constraint  in  (1 10). 
This impulse response (or  its analog counterpart) is a useful 
model for many physical distortions; e.g., motion blur in im- 
ages.  Fig. 10(a) shows the result of convolving h(n) of (1  18) 
(M = 7) with an impulse train to produce the sequence 

~ ( n )  = h(n - 50) + 2.5h(n - 59) + 0.5h(n - 70). (120) 

The result of using the iterative algorithm with X = 2 and the 
finite  support  constraint is shown in Fig. l q b ) ,  and with the 
positivity constraint  in Fig. lO(c). Note the  unstable oscilla- 
tory behavior in Fig. 1 O(b) and  note  that even with the positiv- 
ity  constraint  the algorithm does not distinguish the  three im- 
pulses at all. If y ( n )  and h(n)  are convolved with h,(n)  = 
h(-n) ,  the resulting sequence y (n)  * h, (n )  is as shown in Fig. 
10(d)  and  the resulting deconvolved outputs with  finite sup- 
port and positivity constraints  are  shown in Figs. 10(e)  and 
10(f), respectively. In  this case the peaks are at  the  correct lo- 
cations  and  the heights are in the  correct  proportion.  Thus it 

appears that  the compensation  technique is effective in remov- 
ing a fundamental  limitation of the iterative deconvolution 
algorithm. 

D. Effects of Additive  Noise 
The previous examples have demonstrated the effectiveness 

of the iterative deconvolution algorithm when the signal is 
noiseless;  i.e., the  convolutional model is accurate. Even if the 
convolutional model accurately  fits  the physics of signal  gen- 
eration, it is likely that there will  be a random  error or distur- 
bance in the measurement of recording of the signal. It is 
therefore  important to assess the  effects of such noise and to 
attempt to mitigate the  deleterious  effects  that  this noise has 
on  the deconvolution process. 

To illustrate these effects let us assume that  the sequence 
y ( n )  is corrupted by additive broad-band random noise, but 
that a relatively  noiseless estimate of h(n)  is  available. Such an 
estimate is often available through auxiliary measurements. 
Furthermore, in many  applications h(n)  is approximately 
Gaussian in shape, and a Gaussian substitute may  be  used with 
little degradation of the results. 

The  addition of even moderate amounts of noise to the  data 
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Fig. 1 1 .  Refdtering for  reconstruction  from  noisy  data.  (a)  Positive 
constrained  deconvolution of the data of Fig. 4(a) with noise added. 
The  reault x I S  (n)  shows a tendency to split  the two correct peaks and 
7 small spurious  peaks.  (b)  Result  obtained for xas(n )  after prefdter- 
ing y(n) and k(n) with a lowpass fdter  of cutoff frequency wc= (0.25) 
(n/T) .  The artifacts are suppressed. Compare with Fig. 4(a). 

where the new effective blurring function h'(n) is given  by 

h'(n) = h,(n) * h(n) (122) 

and h,(n) is the unit-sample  response  of the low-pass filter 
applied to y(n)  and h(n).  The sequences y'(n) and h'(n) are 
now  used in place  of y ( n )  and h(n)  in the procedure. How- 
ever, whereas y (n)  contains  broad-band noise, y ' (n)  contains 
relatively narrowband noise  of less total power, much of the 
noise  having  been  removed by  filtering.  This idea is easily ex- 
tended to  deal with bandpass  noise or  more general  blurring 
functions.  Its  efficacy is a  function of the  concentration in 
frequency of the noiseless  signal y(n) .  An additional  benefit 
of this  procedure derives from  the  substitution of h'(n) for 
h(n).  If the estimate of h(n)  is corrupted by  broad-band  noise, 
then  this noise too will  be reduced  by the filtering process. It 
should  be pointed  out  that we  can only  expect to  achieve  im- 
proved performance in the constrained case, since  we rely on 
the  constraints to regenerate the high frequencies removed by 
the filtering. 

The  implementation of this modification  adds very little to  
the  computation involved in  deconvolution.  The  filtering of 
y ( n )  and h(n) is required  only  once  prior to initiating the itera- 
tion. If interpolation of the  data is also required,  as discussed 
in Section IV-A, the  two filtering  operations may be combined 
into  one. If compensation  with h'(-n) is required to gain con- 
vergence this also can be done at  the same time.  Note  that 
such compensation, however, must be  based upon  the new  im- 
pulse response, i.e., the impulse response  which includes the 
contribution of any noise  reducing filters. 

The  effect of this modification to the algorithm is illustrated 
in Fig. 1 l(b) which continues  the  example of Fig. 1  l(a). This 
shows the result  obtained  after  25  iterations  when  the noisy 
data was prefiltered  with  a low-pass filter  with  a  cutoff  fre- 

has serious  effects on  the result. For blurred impulsive data, quency expressed as  a  fraction of the  total possible bandwidth 

errors in the estimate of x(n)  include splitting of single peaks of the  data.  Thus BWF = 0.25 means that  the  cutoff fre- 

into  multiple  peaks, the development of spurious  peaks,  and quency  of h,(n)  is wc = (0.25)(n/T). 

the  obscuration of  low-level  peaks. These  effects  are illus- In general as the passband of the low-pass filter is made nar- 
trated  in Fig. 11. Fig. 1 l(a) shows the signal from Fig. 4(a) rower,  a  greater degree of noise rejection is obtained. At the 

corrupted by uniform pseudo-random  noise with  a signal-to- same time, however, the algorithm is provided with  informa- 

the square of the maximum of the noiseless signal to  the noise that a  greater degree of  bandwidth  extrapolation is required. 
variance), along with the result after 25 iterations of the de-  When the filtering  becomes so Severe as to remove spectral re- 

convolution  algorithm.  This  result shows both  the splitting of gions in which y ( n )  has significant energy, increasing numbers 
the two large impulses and the development of small of iterations  are  required to  maintain  a given resolution in the 

spurious impulses. result.  Thus, the improved performance on noisy data is ob- 

ratio of the signal power  spectrum to the noise power spec- As a  further  example, Fig. 12(a)  shows  a noisy  segment from 

trum is generally  higher for low frequencies than  for high fre- a measured  gamma-ray spectrum  and the  resultant  output  after 

quencies.  Since the deconvolution  procedure  tends to seek a 25  iterations of the deconvolution  algorithm  with X = 2  and 

solution by extrapolating  from  known  spectral segments  of the positivity  constraint. Fig. 12(b)  shows the  input and out- 

x(n)  to  unknown segments, it might  be  possible to improve the put  for BWF = 0.25. Figure 12(b) is clearly the more reason- 

result in the noisy case if the  iteration were  based only on  the able result. 

data  from  the  lower  frequency regions where the signal power The  tradeoff  between noise rejection  and  resolution is shown 

is greatest. This observation leads to  a simple method  for com- by  curves B ,  C, and D in Fig. 9. Recall from  the discussion  of 

batting  the effects of noise on  the algorithm. Section IV-C that curve B shows the dependence of the  width 

The modification to  the algorithm consists  of  low-pass filter- tions-for X = 2. curve holds for all values of BWF between of  a single deconvolved  Gaussian  pulse on  the  number of itera- 

ing both  the  data y ( n )  and  the blurring function h(n) prior to 
applying the iterative  procedure,  as  in the case of compensa- 0.5 and  1 .O. Curve C is for BWF = 0.25 and D is for BWF = 

tion to  insure convergence. The effect again is t o  solve a  sub- 0.1. Clearly, restricting the  bandwidth  daws  the  rate of con- 

stitute problem described  by the relation vergence, but  not dramatically. For example  restricting the 
bandwidth to  only 25 percent of the origin& band increases 

y ' (n )  = h ~ n )  y ( n )  = h'(n) * x(n)  (1 2 1) the  number of iterations  required  for a given width by only  a 

noise ratio (SNR) of 30 dB (SNR is here defined  as the ratio of tion about x ( n )  Over a limited  portion Of the spectrum so 

Due to  the low-pass nature of h(n) and  thus of y(n) ,  the tained at the Of greater 
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Fig. 12. Positiveaonstraine  deconvolution of  a segment of  a noisy 

gamma-ray spectrum  for 'olmPO. (a)  Without  prefiltering. (b) With 
prefiltering. The cutoff frequency is wc = (0.25)(m/T). Both  results 
were  obtained  after 25 iterations  with h = 2. 

factor of 1.25, while using only  10  percent of the original 
band increases the  number of iterations  by  a  factor of 4. 

Thus  the simple low-pass filtering  operation is effective  in 
mitigating the  effects of additive noise. A possible refinement 
of this  approach would be to use an  optimum  smoothing fil- 
ter of the Wiener type instead of the low-pass filter.  In  any 
case it is interesting to  note  that as in the case  of the interpola- 
tion  and convergence compensation  operators we  have shown 
that by introducing  additional  linear  distortion  it is possible 
to improve the  performance of the iterative  deconvolution 
algorithm. 

E. Shift-Varying Blur-An Example 
In many practical  applications, the appropriate  distortion 

model is shift-varying. This is in  fact  the case for gamma-ray 
spectra, where the  amount of blurring  (width of the observed 
spectral  lines) increases with energy. In such cases, where the 
distortion is linear but  shift-varying,  the  distortion  operator is 
described by the  superposition sum 

OD 

r(n) = x ( m )  h(n, m )  (123) 

where h(n,  m )  is the response of the  system to a  unit  sample  at 
index m .  As we have pointed out, the  iterative  restoration 
approach can be applied  in  the  shift-variant case, but of c o m e  
the  two-dimensional  sequence h(n,  m )  must be known. In 
general,  complete knowledge of h(n,  m )  may be impossible to 

m=-w 

obtain; however,  in cases  of spectrum  line  broadening where 
the line shape is fixed, it may  be possible to estimate the 
variation of linewidth  with  the  independent variable. In such 
cases an appropriate  model might be 

That is, the response of the  distortion  system to  an impulse 
6(n - m )  is a Gaussian pulse with  standard devi. tion u(m)  
centered  at n = m .  In this case only u(m)  need be known in 
order to implement the shift varying operator. (h (n ,  m )  would 
of course have to be limited to a f i t e  region of support  in 
order to carry out  the operation of (1 23)). 

The following  simulated  example,  due to Marucci [ 291, illus- 
trates  the value of the  iterative  approach. In this example, the 
true  input x(n)  is the uniform  impulse  train 

~ ( n )  = 6(n - 50 - 10k) 
15 

k=O 

as depicted  in Fig. 13(a). The shift-varying blurring  function 
used  was that of (1 24)  with 

o(m) = 2 + ( m  - 50)/100.  (126) 

The  blurred signal y ( n )  is shown  in Fig. 13(b). 
First, y ( n )  was processed using the  iterative  algorithm  with 

positivity  and finte support  constraints  and assuming that  the 
distortion was shift-invariuntwith  impulse  response 

h(n) = (127) 

The  result  after 500 iterations is shown in Fig. 13(c).  Note 
that  the f i t  four  or five impulses  are well restored; however, 
the  later impulses where the  blurring was much  greater  than 
that of (127),  are  not  recovered. When the  true distortion 
operator specified by (1 23),  (1  24),  and  (1  26) was used in the 
iterative  algorithm  with  the  same  constraints,  the  result  after 
500 iterations was as shown  in Fig. 13(d). Clearly this  result is 
far  better  than  in  the  shift-invariant  one. Notice that  the later 
impulses where the degree of blur was the  greatest were not 
completely  restored  after 500 iterations. This is consistent 
with  the  results of Section IV-B where it was shown that  the 
width of the  restored Gaussian pulse decreases roughly as the 
logarithm of the  iteration  number. Thus a  far  greater number 
of iterations will be required to achieve a given width  for  the 
later impulses than  for  the  earlier  ones. 

The  results  obtained  with  this  simulated  example  are  an 
indication that iterative  restoration may be possible in certain 
cases  of shift-varying  distortion. When sufficient knowledge 
about  the  distorting  system is available, the  iterative  approach 
may permit  restoration  with  constraints,  without  the  need to 
implement  a  shift-varying inverse system  and  without  resorting 
to locally  shift-invariant  approximations. 

V. SUMMARY 
This paper has described a  rather  broad class  of iterative 

signal restoration  techniques. We have shown that  the basic 
functional  equation 

x = C x + X ( y - D C x )  (1 28) 

can be applied  with  many  different  types of distortions  and 
constraints,  and we have shown that under  certain  conditions 
the  method of  successive substitutions leads to a  convergent 
iterative  solution. It should be reemphasized that  the formula- 
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Fig. 13. Positive-constrained  reconstruction from a  shift-varying blur. 

su l t  obtained  after 500 iterations  assuming  a  shift-invariant blur. 
(a) Original impulse train x(n) .  (b) Blurred sequence y(n). (c) Re- 

(d) Result  obtained  after 500 iterations  using  the  correct  shift-varying 
blur. 

tion explored in detail  here is not unique  and that  other basic 
functional  equations may  have  advantages for certain distor- 
tions  and  constraints. 

In addition to discussing the general framework  and surveying 
a  number of iterative  techniques, we  have elaborated  upon 
the details of a class of iterative  deconvolution  algorithms  and 
their  application to  blurred  impulsive signals. In Section IV it 
was shown that  the constrained  deconvolution  algorithms  are 
sensitive to additive  noise, but  that  the effects of  noise  can  be 
mitigated  by  a  judicious  combination of predistortion  for 
filtering the noise  and  constraints for restoring signal informa- 
tion  that has been  lost.  It appears that this  approach could  be 
useful  with other  distortion  and  constraint  operators; however, 
it should be emphasized that we have not given a general  pro- 
cedure for  doing  this.  It seems clear, however, that  the basic 
goal should be to  make the available signal better  fit  the  model 
imposed  by the combined  distortion  and  constraint  operators. 
Clearly, further work is required to establish  a general approach 
to fiiding  constraint  operators  (and  predistortion  operators) 
that insure convergence to  solutions  consistent  with the under- 
lying  physics  of the problem. 

In addition to the new insight into specific  algorithms  and 
their  inter-relationships, it is hoped that  the general  principles 
established herein may  lead to new  algorithms  for new com- 
binations of distortions  and  constraints. An example is the 
illustration of Section IV-E.  In the case  of shift-variant dis- 
tortions,  a  major  advantage is the  fact that only the distortion 
operator  need be implemented  rather than its shift-varying 
inverse. Another  example, which  we  have just begun to  study, 
is the case  where we are  given multiple  distorted versions 
y .  = D . x  i = 1, . - *, N ,  of the desired signal x. Following 
the same approach as before we easily arrive at  the  iteration 

I I ?  

equation 

xk+l  = X 0  +GXk 

where 
N 

xo = hiyi 
i = l  

and 

N 
G =  (I- 2 hiD$ c. (131) 

As before C is  an  appropriate Constraint operator. A notable 
example of a  problem where such  an algorithm  could  be applied 
is the  reconstruction of multidimensional signals from projec- 
tions [30].  In this case, the Di would  be (linear) projection 
operators  and C might  be a  positivity  constraint. 

A fiial comment  should be  made about convergence  of 
iterative schemes. It  should be  emphasized that  the underlying 
functional  equation is what is being  solved, and the  method of 
successive substitutions  is  not  the  only iterative  approach that 
can be followed.  In  many cases it may, in fact, be the least 
efficient approach.  Other schemes,  which  may  involve more 
computations per iteration, may  converge in many fewer itera- 
tions [ 291. The application of these  more  sophisticated  solu- 
tion  methods may  lead to  wider applicability of this  approach 
to signal restoration-particularly  in the case  of multidimen- 
sional signals. In  any case, the clear advantage  of this  approach 
and  the increasing availability of  high-speed digital processors 
suggest that  the techniques that we have  described for  solution 
of signal restoration  problems are worthy of consideration in 
many  application areas. 
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APPENDIX 
A PROPERTY OF DISCRETE BANDLIMITED SEQUENCES 

Consider a discrete  bandlimited sequence V(n) such  that  its 
Fourier  transform has the  property 

Then the  sequence w(n)  defined by 

N 
w(n) = v(n)  - a& - k) (A.2) 

k=1 

also has a  bandlimited  Fourier  transform. By setting w(n) = 
0 for  1 < n < N ,  we obtain  the  equations 

N 
u(n)  = 2 a&u(n - k), 1 < n < N .  (A.3) 

k=1 

These equations can  be  solved for the set of coefficients a k ,  
k = 1 , 2 ; - * ,  N such  that w ( n ) = O  for  1 <n<N. In the 
special case  where u(n) is an  autocorrelation  function  with 
bandlimited Fourier  transform; i.e. v ( n )  = u(-n)  and 

(A.4) 

then (A.3) are identical to  the  normal  equations  that arise in 
autoregressive spectrum analysis, and  therefore  they can be 
solved  by the Levinson or  Durbin  recursion. 
Thus we  have shown that  it is possible to construct  a  band- 

limited sequence which is zero over an interval of N consecutive 
samples. This interval  could obviously be positioned  at  any 
desired location by a shift. 
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