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1BSTRACT 

There has recently been considerable inter- 
est in iterative deconvolution algorithms. Some of 
these algorithms seek to improve performance by in- 
corporating priori knowledge of the components of 
a convolution. For example, incorporation of both 
positivity and finite interval constraints tends to 

automatically introduce an extrapolation of the 
bandwidth. A question which naturally arises con- 
cerns the effect of noise on the performance of 
such algorithms. In this paper we describe an ex- 
perimental evaluation of the effect of noise using 
synthetic data. Results of extensive tests are 
presented and some suggestions for mitigating the 
effects of noise are offered. 

INTRODUCTION 

Deconvolution is the process of recovering 
the input to a linear shift—invariant system given 
the output and knowledge of the system. This prob- 
lem has arisen in a wide variety of applications 
and has long been a subject of research. The most 
successful algorithms for its solution incorporate 
priori knowledge of the desired signal into the 

deconvolution process so as to improve performance. 
A serious difficulty with most techniques is their 
high sensitivity to noise in the data. In this 

paper we will describe the observed effects of 
noise on a class of iterative deconvolution algo- 
rithms and suggest a simple scheme for combatting 
these effects. Results will be illustrated with 
examples based on artificially constructed data. 

A Class of Iterative Deconvolution Algorithms 

The algorithms will be formulated for dis- 
crete one—dimensional signals, but are easily ex- 
tended to higher—dimensional or continuous signals. 
Accordingly, assume that the given signal y(n) is 
the sampled representation of a one—dimensional 
continuous signal y(t), and that h(n), the sampled 
representation of a bandlimited impulse response 
ha(t), is known. Assume also that y(n) may be 
represented as 

* 

y(n) = x(n)*h(n) 
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where x(n) is a bandlimited sampled representation 
of the desired signal Xa(t) and the symbol * de- 
notes discrete convolution. The deconvolution al- 
gorithms are described by the following equations: 

x(n) = y(n) (2a) 

x.(n) = Ay(n) +T[x.1(n)]*g(n) , i=l,2,... (2b) 

In these equations x(n) is the th approximation 
to x(n), g(n) is defined by 

g(n) = 5(n) — Ah(n) (3) 

where ó(n) is the unit sample sequence, A is a 

parameter which controls the rate of convergence, 
and the operator T denotes an arbitrary transf or— 
mation on the sequence xi_i(n). Algorithms in- 
cluded in this class differ mainly in the defini- 
tion of the transformation T, and also. in the 
choice of the parameter A. This formulation 
includes a number of previously reported algorithms 
as special cases [4—7]. For example, Van Cittert's 
algorithm [4] results if X=l and T[xi]=x. The 
choice of the operator T allows the easy incorpo- 
ration of many types of a' priori constraints into 
the deconvolution process. 

A useful choice for T is the following: 

T{x. (n)] = x.(n) , n ,x.(n)�0 
1 1 2 . 

otherwise (4) 

In this case the algorithm is tailored to the as- 
sumption that the desired signal is non—negative 
and of finite extent. This situation arises in 
several applications, such as the deconvolution of 
blurred line spectra or of light images. It has 
been shown that the algorithm converges in this 
case, subject to a proper choice of the parameter 
A. 

=0 

The discrete implementation of this pro- 
cedure is straightforward, with one exception. 
Since the operator T is nonlinear, it tends to ex- 
tend the bandwidth of the sequence it operates on. 

(1) This tendency is reinforced by the filter g(n), 
which is generally highpass in nature since h(n) 
is lowpass in most cases. The net effect is to 
increase the bandwidth of xi(n) at each iteration. 
This bandwidth extrapolation phenomenon may imply 
a requirement for interpolation of the data y(n) 
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and h(n), which can ba accomplished using digital 
filtering techniques [8]. 

The performance of the algorithm in the 
noiseless case has been previously discussed [2,3]. 
It produces excellent results for data which can be 
modeled as the convolution of a group of positive 
impulses with a positive blurring function, such as 
blurred line spectra. An example is shown in 
Figure 1. Figure 1A is the convolution of two im- 

pulses of equal height and a separation of 8 sam- 
ples with a Gaussian function having a standard 
deviation of 4 samples. This and all subsequent 
sequences have been interpolated by a factor of 4 
using a linear phase FIR filter. Figure lB shows 
the result obtained after 25 iterations of the al- 
gorithm with 1=2 and T chosen as in Eq. (4). The 
two peaks ere clearly resolved, end the result is 
free of artifacts. 

2cj 
B —2) 

Figure 1. Deconvolution of Noiseless Date 
(A) Blurred Data (B) Result After 
25 Itereticns 

TRF EFFECTS OF NOISE 

Assume that the sequence y(n) is corrupted 
by additive broadband random noise. Assume also 
that a relatively noiseless estimate of h(n) is 
available. Such en estimate is often available 
through auxiliary measurements. Furthermore, in 

many applications h(n) is approximately Gaussian in 

shape, end a Gaussian substitute may be used with 
little degradation of the results. 

The addition of even moderate amounts of 
noise to the date has serious deleterious effects 
on the result. For blurred impulsive dete, errors in 
the estimate of x(n) include splitting of single 
peeks into multiple peeks, the development of 

spurious peeks, end the obscuration of low-level 
peeks. These effects ere illustrated in Figure 
2. Figure 2A shows the date from Figure 1A cor- 

rupted by uniform pseudo—rendom noise with a 
signal-to-noise reto (SNR) of 30 db (SNR is defined 
es the ratio of the square of the meximum of the 
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noiseless signal to the noise veriemce), while 
Figure 28 shows the result after deconvolution for 
25 iterations. Peek splitting end spurious peeks 
are much in evidence. 

Figure 2. Oeconvolution of Noisy Dete (A) Blurred 
Date with 30 dO Noise (B) Result After 
25 Iterations 

A NOOIFICATION TO IMPROVE PERFORMANCE 
ON NOISY DATA 

Due to the lowpess nature of h(n) end thus 
of y(n), the SNR of noisy date is generelly higher 
for low frequencies then for high frequencies. 
Since the deconvolution procedure tends to seek e 
solution by extrapolating from known spectrel seg- 
ments of x(n) to unknown segments, it might be 
possible to improve the result in the noisy case if 
the iteretion wes based only on the dete from the 
lower frequency regions where the signal power, end 
thus SNR, is greetest. This observetion leeds toe 
simple method for combetting the effects of noise 
on the elgorithm. 

The modificetion to the elgorithm consists 
of lowpess filtering both the dete y(n) end the 
blurring function h(n) prior to applying the itere— 
tive procedure. The effect is to solve a substi- 
tute problem described by the reletion 

y'(n) = hf(n)*y(n) 
= h' (n)*x(n) 

(5) 

where the new effective blurring function h' (n) is 
given by 

h'(n) = hf(n)*h(n) (6) 

end hf(n) is the nnit—ssmple response of the low- 

pass filter epplied to y(n) end h(n). The se- 
quences y' (n) end h' (n) ere now used in plece of 
y(n) end h(n) in the procedure. Nowever, whereas 

y(n) conteins broedbend noise, y' (n) conteins 

reletively nerrowbend noise of less total power, 

4 
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much of the noise having been removed by the f ii- 
tering process. This idea is easily extended to 
deal with bandpass noise or more general blurring 
functions. Its efficacy is a function of the con- 
centration in frequency of the noiseless signal 
y(n). An additional benefit of this procedure 
derives from the substitution of h'(n) for h(n). 
If the estimate of h(n) is corrupted by broadband 
noise, then the noise will be reduced by the 
filtering process. 

The implementation of this modification adds 
very little to the computation involved in decon— 
volution. The filtering of y(n) and h(n) is re- 
quired only once prior to initiating the iteration. 
If interpolation of the data is also required, as 
is often the case, the two filtering operations may 
be combined into one. 

The effect of this modification to the algo- 
rithm is illustrated in Figure 3, which continues 
the example of Figure 2. This shows the result ob- 
tained after 25 iterations when the noisy data is 

prefiltered with a lowpass filter. The cutoff 

frequency is expressed as a fraction of the total 
possible bandwidth of the data (BWF). As the pass- 
band is made narrower, the degree of peak splitting 
and the number and intensity of spurious peaks are 

reduced, so that the result more closely approaches 
the noiseless case. 

Effect on Convergence 

As the passband of the lowpass filter is 
made narrower, a greater degree of noise rejection 
is obtained. At the same time, however, the algo- 
rithm is provided with information about x(n) over 
a more limited portion of the spectrum so that a 
greater degree of bandwidth extrapolation is re- 

quired. When the filtering becomes so severe as to 
remove spectral regions in which y(n) has signifi- 
cant energy, increasing numbers of iterations are 

required to maintain a given resolution in the re- 
sult. Thus, the improved performance on noisy 
data is obtained at the cost of greater computation. 

This phenomenon is evident in Figure 3D, 
where 90% of the spectrum of the original noisy 
data was removed prior to deconvolution. The 
resolution of the result is poor compared to the 
other cases. The tradeoff between noise rejection 
and resolution is summarized in Figure 4. This 

graph was obtained using data resulting from the 
deconvolution of a single blurred impulse in the 
absence of noise. It depicts the normalized width 
at half the maximum value of the deconvolved peak 
as a function of the number of iterations, and 
clearly shows that restricting the passband of the 
noise rejection filter slows the rate of 

convergence. 

Also shown in Figure 4 is the effect of the 
parameter A upon the rate of convergence. For X=2, 
the number of iterations required to achieve a 

given resolution is about one half that required 
when A=l. The choice of A=2 appears to be nearly 
optimal when h(n) is normalized so that IH(eju) 
has a maximum value of one. Choosing A smaller 
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slows convergence, while choosing it larger leads 
to instability of the algorithm. 

CONCLUSIONS 

We have described a simple filtering tech- 
nique for improving the performance of a class of 
iterative deconvolution algorithms when the data is 
subject to broadband noise. The effectiveness of 
the procedure was demonstrated, and the computa- 
tional tradeoffs involved were discussed. Although 
the results were illustrated for only one member of 
the class, similar results might be expected to 
hold for other members which exhibit the bandwidth 
extrapolation property. Present research concernr 
the effects of other deviations from the signal 
model (for example, a poor estimate of h(n)) and 
the comparative performance of this procedure to 
other positive constrained algorithms. 
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Figure 4. Effect of Prefiltering and A on Rate of Convergence. (A) X=2, BWF=l.O,O.5, (B) A=2, 
BWF=O.25, (C) A=2, BWF=O.l, (D) A=1, BWF=1.0. 
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Figure 3. Deconvolution of Noisy Data Using Varying Degrees of Prsfiltering. The Result After 25 
Iterations is Shown. (A) BWF=O.75 (B) RWp=O.5 (C) BWF=O.25 (D) BWF=O.l. 
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